This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305762 #19 Oct 15 2022 08:09:49 %S A305762 24,1,1,1,2,1,1,1,4,3,1,1,2,1,1,1,8,1,3,1,2,1,1,1,4,1,1,3,2,1,1,1,8,1, %T A305762 1,1,6,1,1,1,4,1,1,1,2,3,1,1,8,1,1,1,2,1,3,1,4,1,1,1,2,1,1,3,8,1,1,1, %U A305762 2,1,1,1,12,1,1,1,2,1,1,1,8,3,1,1,2,1,1,1,4,1 %N A305762 a(0) = 24, a(n) = 2^(max(0, min(3, p - 1))) * 3^(max(0, min(1, q - 1))) where n = 2^p * 3^q * 5^r * ... . %H A305762 Seiichi Manyama, <a href="/A305762/b305762.txt">Table of n, a(n) for n = 0..10000</a> %F A305762 a(n+144) = a(n). %F A305762 a(n) = gcd(24, n/gcd(6,n)). - _Andrew Howroyd_, Jul 24 2018 %F A305762 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 77/36. - _Amiram Eldar_, Oct 15 2022 %t A305762 a[n_] := GCD[24, n/GCD[6, n]]; Array[a, 100, 0] (* _Amiram Eldar_, Oct 15 2022 *) %o A305762 (PARI) a(n)=gcd(24, n/gcd(6,n)) \\ _Andrew Howroyd_, Jul 24 2018 %o A305762 (Ruby) %o A305762 require 'prime' %o A305762 def A305762(n) %o A305762 return 24 if n == 0 %o A305762 s = 1 %o A305762 s *= 3 if n % 9 == 0 %o A305762 n.prime_division.each{|i| %o A305762 s *= 2 ** [3, (i[1] - 1)].min if i[0] == 2 %o A305762 } %o A305762 s %o A305762 end %o A305762 p (0..144).map{|i| A305762(i)} %Y A305762 Cf. A305756. %K A305762 nonn,mult %O A305762 0,1 %A A305762 _Seiichi Manyama_, Jun 10 2018 %E A305762 Keyword:mult added by _Andrew Howroyd_, Jul 24 2018