cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305795 Restricted growth sequence transform of A305794, a filter sequence constructed from the binary expansions of the divisors of n.

This page as a plain text file.
%I A305795 #11 Jun 12 2018 10:16:32
%S A305795 1,2,3,4,5,6,7,8,9,10,11,12,11,13,14,15,5,16,11,17,18,19,20,21,22,19,
%T A305795 23,24,20,25,26,27,28,10,29,30,31,19,32,33,31,34,35,36,37,38,39,40,41,
%U A305795 42,23,36,35,43,44,45,32,38,46,47,39,48,49,50,51,52,11,17,53,54,20,55,31,56,57,36,58,59,39,60,61,56,35,62,63,64,65,66,35,67
%N A305795 Restricted growth sequence transform of A305794, a filter sequence constructed from the binary expansions of the divisors of n.
%H A305795 Antti Karttunen, <a href="/A305795/b305795.txt">Table of n, a(n) for n = 1..65537</a>
%H A305795 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A305795 For all i, j:
%F A305795   a(i) = a(j) => A000005(i) = A000005(j).
%F A305795   a(i) = a(j) => A007814(i) = A007814(j).
%F A305795   a(i) = a(j) => A093653(i) = A093653(j).
%F A305795   a(i) = a(j) => A154402(i) = A154402(j).
%F A305795   a(i) = a(j) => A305436(i) = A305436(j).
%o A305795 (PARI)
%o A305795 \\ Needs also code from A286622:
%o A305795 up_to = 65537;
%o A305795 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A305795 A305794(n) = { my(m=1); fordiv(n, d, if(d>1, m *= prime(A286622(d)-1))); (m); };
%o A305795 v305795 = rgs_transform(vector(up_to, n, A305794(n)));
%o A305795 A305795(n) = v305795[n];
%Y A305795 Cf. A278222, A286622, A305794.
%Y A305795 Cf. also A304105, A305793, A305815.
%K A305795 nonn
%O A305795 1,2
%A A305795 _Antti Karttunen_, Jun 11 2018