A305830 Combined weight of the n-th FDH set-system. Factor n into distinct Fermi-Dirac primes (A050376), normalize by replacing every instance of the k-th Fermi-Dirac prime with k, then add up their FD-weights (A064547).
0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 1, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 3, 2, 3, 3, 3, 2, 1, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 3, 3, 2, 3
Offset: 1
Keywords
Examples
Sequence of FDH set-systems (a list containing all finite sets of finite sets of positive integers) begins: 1: {} 2: {{}} 3: {{1}} 4: {{2}} 5: {{3}} 6: {{},{1}} 7: {{4}} 8: {{},{2}} 9: {{1,2}} 10: {{},{3}} 11: {{5}} 12: {{1},{2}} 13: {{1,3}} 14: {{},{4}} 15: {{1},{3}} 16: {{6}} 17: {{1,4}} 18: {{},{1,2}} 19: {{7}} 20: {{2},{3}} 21: {{1},{4}} 22: {{},{5}} 23: {{2,3}} 24: {{},{1},{2}} 25: {{8}} 26: {{},{1,3}} 27: {{1},{1,2}}
Crossrefs
Programs
-
Mathematica
nn=100; FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; Table[Total[Length/@(FDfactor/@(FDfactor[n]/.FDrules))],{n,nn}]
Comments