cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305831 Number of connected components of the strict integer partition with FDH number n.

This page as a plain text file.
%I A305831 #6 Jun 11 2018 13:13:06
%S A305831 0,1,1,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,2,2,1,3,1,2,1,2,1,2,1,2,2,2,
%T A305831 2,1,1,2,1,3,1,3,1,2,1,2,1,2,1,2,1,2,1,2,2,3,2,2,1,2,1,2,2,1,1,3,1,2,
%U A305831 1,3,1,2,1,2,2,2,2,2,1,2,1,2,1,3,1,2,1
%N A305831 Number of connected components of the strict integer partition with FDH number n.
%C A305831 Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
%e A305831 Let f = A050376. The FD-factorization of 1683 is 9*11*17 = f(6)*f(7)*f(10). The connected components of {6,7,10} are {{7},{6,10}}, so a(1683) = 2.
%t A305831 FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
%t A305831 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A305831 nn=200;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
%t A305831 Table[Length[zsm[FDfactor[n]/.FDrules]],{n,nn}]
%Y A305831 Cf. A048143, A050376, A064547, A213925, A299755, A299756, A304714, A304716, A305078, A305079, A305829, A305830, A305832.
%K A305831 nonn
%O A305831 1,6
%A A305831 _Gus Wiseman_, Jun 10 2018