This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305833 #20 Sep 05 2018 02:26:50 %S A305833 1,4,16,1,64,8,256,48,1,1024,256,12,4096,1280,96,1,16384,6144,640,16, %T A305833 65536,28672,3840,160,1,262144,131072,21504,1280,20,1048576,589824, %U A305833 114688,8960,240,1,4194304,2621440,589824,57344,2240,24,16777216,11534336,2949120,344064,17920,336,1 %N A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. %C A305833 The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013611 ((1+4*x)^n). %C A305833 The coefficients in the expansion of 1/(1-4x-x^2) are given by the sequence generated by the row sums. %C A305833 The row sums are A001076 (Denominators of continued fraction convergent to sqrt(5)). %C A305833 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 4.236067977...; a metallic mean (see A098317), when n approaches infinity. %D A305833 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373. %H A305833 Shara Lalo, <a href="/A305833/a305833.pdf">Left justified triangle</a> %H A305833 Shara Lalo, <a href="/A305833/a305833_1.pdf">Skew diagonals in triangle A013611</a> %F A305833 G.f.: 1 / (1 - 4*t*x - t^2). %e A305833 Triangle begins: %e A305833 1; %e A305833 4; %e A305833 16, 1; %e A305833 64, 8; %e A305833 256, 48, 1; %e A305833 1024, 256, 12; %e A305833 4096, 1280, 96, 1; %e A305833 16384, 6144, 640, 16; %e A305833 65536, 28672, 3840, 160, 1; %e A305833 262144, 131072, 21504, 1280, 20; %e A305833 1048576, 589824, 114688, 8960, 240, 1; %e A305833 4194304, 2621440, 589824, 57344, 2240, 24; %e A305833 16777216, 11534336, 2949120, 344064, 17920, 336, 1; %e A305833 67108864, 50331648, 14417920, 1966080, 129024, 3584, 28; %t A305833 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten %Y A305833 Row sums give A001076. %Y A305833 Cf. A000302 (column 0), A002697 (column 1), A038845 (column 2), A038846 (column 3), A040075 (column 4). %Y A305833 Cf. A013611. %Y A305833 Cf. A098317. %K A305833 tabf,nonn,easy %O A305833 0,2 %A A305833 _Shara Lalo_, Jun 11 2018