This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305834 #18 Sep 05 2018 02:27:14 %S A305834 1,1,1,4,1,8,1,12,16,1,16,48,1,20,96,64,1,24,160,256,1,28,240,640,256, %T A305834 1,32,336,1280,1280,1,36,448,2240,3840,1024,1,40,576,3584,8960,6144,1, %U A305834 44,720,5376,17920,21504,4096 %N A305834 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 4*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. %C A305834 The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013611 ((1+4*x)^n). %C A305834 The coefficients in the expansion of 1/(1-x-4*x^2) are given by the sequence generated by the row sums. %C A305834 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.5615528128...: A222132 (sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... ))))), when n approaches infinity. %D A305834 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 371, 372. %H A305834 Shara Lalo, <a href="/A305834/a305834.pdf">Right justified triangle</a> %H A305834 Shara Lalo, <a href="/A305834/a305834_1.pdf">Skew diagonals in triangle A013611</a> %F A305834 G.f.: 1/(1 - t*x - 4*t^2). %F A305834 Column k is binomial (n + k - 1, k) * 4^k. %e A305834 Triangle begins: %e A305834 1; %e A305834 1; %e A305834 1, 4; %e A305834 1, 8; %e A305834 1, 12, 16; %e A305834 1, 16, 48; %e A305834 1, 20, 96, 64; %e A305834 1, 24, 160, 256; %e A305834 1, 28, 240, 640, 256; %e A305834 1, 32, 336, 1280, 1280; %e A305834 1, 36, 448, 2240, 3840, 1024; %e A305834 1, 40, 576, 3584, 8960, 6144; %e A305834 1, 44, 720, 5376, 17920, 21504, 4096; %e A305834 1, 48, 880, 7680, 32256, 57344, 28672; %e A305834 1, 52, 1056, 10560, 53760, 129024, 114688, 16384; %e A305834 1, 56, 1248, 14080, 84480, 258048, 344064, 131072; %e A305834 1, 60, 1456, 18304, 126720, 473088, 860160, 589824, 65536; %e A305834 1, 64, 1680, 23296, 183040, 811008, 1892352, 1966080, 589824; %t A305834 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 4 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten %Y A305834 Row sums give A006131. %Y A305834 Cf. A000012 (column 0), A008586 (column 1), A035008 (column 2), A141478 (column 3), A120054 (column 4). %Y A305834 Cf. A013611. %Y A305834 Cf. A222132. %K A305834 tabf,nonn,easy %O A305834 0,4 %A A305834 _Shara Lalo_, Jun 11 2018