cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305837 Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 5, 25, 1, 125, 10, 625, 75, 1, 3125, 500, 15, 15625, 3125, 150, 1, 78125, 18750, 1250, 20, 390625, 109375, 9375, 250, 1, 1953125, 625000, 65625, 2500, 25, 9765625, 3515625, 437500, 21875, 375, 1, 48828125, 19531250, 2812500, 175000, 4375, 30, 244140625, 107421875, 17578125, 1312500, 43750, 525, 1
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013612 ((1+5*x)^n).
The coefficients in the expansion of 1/(1-5x-x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 5.1925824035..., a metallic mean (see A098318), when n approaches infinity.

Examples

			Triangle begins:
            1;
            5;
           25,           1;
          125,          10;
          625,          75,          1;
         3125,         500,         15;
        15625,        3125,        150,         1;
        78125,       18750,       1250,        20;
       390625,      109375,       9375,       250,        1;
      1953125,      625000,      65625,      2500,       25;
      9765625,     3515625,     437500,     21875,      375,      1;
     48828125,    19531250,    2812500,    175000,     4375,     30;
    244140625,   107421875,   17578125,   1312500,    43750,    525,     1;
   1220703125,   585937500,  107421875,   9375000,   393750,   7000,    35;
   6103515625,  3173828125,  644531250,  64453125,  3281250,  78750,   700,  1;
  30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.

Crossrefs

Row sums give A052918.
Cf. A000351 (column 0), A053464 (column 1), A081135 (column 2), A081143 (column 3), A036071 (column 4).
Cf. A013612.
Cf. A098318.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - 5*t*x - t^2).