cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305842 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A000293 (solid partitions).

This page as a plain text file.
%I A305842 #6 Feb 16 2025 08:33:54
%S A305842 1,4,6,14,15,26,26,48,46,83,97,146,112,49,-186,-448,-735,-485,779,
%T A305842 3977,9323,16569,23056,23996,10116,-31501,-120720,-283153,-548924,
%U A305842 -932348,-1380125,-1655520,-1144651,1384894,7943203,21083482,42787785,71816970,98995196
%N A305842 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A000293 (solid partitions).
%C A305842 Inverse weigh transform of A000293.
%H A305842 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A305842 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SolidPartition.html">Solid Partition</a>
%F A305842 Product_{n>=1} (1 + x^n)^a(n) = Sum_{k>=0} A000293(k)*x^k.
%e A305842 (1 + x) * (1 + x^2)^4 * (1 + x^3)^6 * (1 + x^4)^14 * (1 + x^5)^15 * ... * (1 + x^n)^a(n) * ... = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + ... + A000293(k)*x^k + ...
%Y A305842 Cf. A000293, A001511, A037452, A193718, A305841.
%K A305842 sign
%O A305842 1,2
%A A305842 _Ilya Gutkovskiy_, Jun 11 2018