A305847 Solution a() of the complementary equation a(n) + b(n) = 5*n, where a(1) = 1. See Comments.
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90
Offset: 1
Examples
a(1) = 1, so b(1) = 5 - a(1) = 4. In order for a() and b() to be increasing and complementary, we have a(2) = 2, a(3) = 3, a(4) = 5, etc.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); u = 5; v = 5; z = 220; c = {v}; a = {1}; b = {Last[c] - Last[a]}; Do[AppendTo[a, mex[Flatten[{a, b}], Last[a]]]; AppendTo[c, u Length[c] + v]; AppendTo[b, Last[c] - Last[a]], {z}]; c = Flatten[Position[Differences[a], 2]]; a (* A305847 *) b (* A305848 *) c (* A305849 *) (* Peter J. C. Moses, May 30 2018 *)
Comments