This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305850 #16 Mar 12 2022 11:33:26 %S A305850 1,1,2,7,21,78,305,1304,6007,29854,159012,904986,5479078,35150263, %T A305850 238033523,1695554145,12663533586,98881246850,805128085616, %U A305850 6820302066048,59983405937707,546690232627480,5154757226832625,50208266917662433,504482106565647708 %N A305850 Weigh transform of the Bell numbers (A000110). %H A305850 Alois P. Heinz, <a href="/A305850/b305850.txt">Table of n, a(n) for n = 0..576</a> %F A305850 G.f.: Product_{k>=1} (1+x^k)^Bell(k). %p A305850 g:= proc(n) option remember; `if`(n=0, 1, %p A305850 add(binomial(n-1, j-1)*g(n-j), j=1..n)) %p A305850 end: %p A305850 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A305850 add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i))) %p A305850 end: %p A305850 a:= n-> b(n$2): %p A305850 seq(a(n), n=0..30); %t A305850 g[n_] := g[n] = If[n == 0, 1, %t A305850 Sum[Binomial[n - 1, j - 1]*g[n - j], {j, 1, n}]]; %t A305850 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, %t A305850 Sum[Binomial[g[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; %t A305850 a[n_] := b[n, n]; %t A305850 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 12 2022, after _Alois P. Heinz_ *) %Y A305850 Cf. A000110, A290351, A305846, A305852. %K A305850 nonn %O A305850 0,3 %A A305850 _Alois P. Heinz_, Jun 11 2018