This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305852 #20 Dec 21 2020 11:55:21 %S A305852 1,1,3,16,91,658,5567,54917,620081,7905592,112382245,1762646331, %T A305852 30231516786,562750751610,11297034281595,243241826522376, %U A305852 5591075279423398,136633359995403580,3537193288612096901,96697587673174195740,2783492094736121087958 %N A305852 Weigh transform of the Fubini numbers (ordered Bell numbers, A000670). %H A305852 Alois P. Heinz, <a href="/A305852/b305852.txt">Table of n, a(n) for n = 0..424</a> %F A305852 G.f.: Product_{k>=1} (1+x^k)^A000670(k). %F A305852 a(n) ~ n! / (2 * log(2)^(n+1)). - _Vaclav Kotesovec_, Sep 10 2019 %p A305852 g:= proc(n) option remember; `if`(n=0, 1, %p A305852 add(g(n-j)*binomial(n, j), j=1..n)) %p A305852 end: %p A305852 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A305852 add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i))) %p A305852 end: %p A305852 a:= n-> b(n$2): %p A305852 seq(a(n), n=0..30); %t A305852 g[n_] := g[n] = If[n == 0, 1, %t A305852 Sum[g[n - j] Binomial[n, j], {j, 1, n}]]; %t A305852 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, %t A305852 Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; %t A305852 a[n_] := b[n, n]; %t A305852 a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 21 2020, after _Alois P. Heinz_ *) %Y A305852 Cf. A000670, A290352, A305850, A305853. %K A305852 nonn %O A305852 0,3 %A A305852 _Alois P. Heinz_, Jun 11 2018