This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305861 #16 Sep 08 2022 08:46:21 %S A305861 5,37,165,613,2085,6757,21285,65893,201765,613477,1856805,5603173, %T A305861 16875045,50756197,152530725,458116453,1375397925,4128290917, %U A305861 12389067045,37175589733,111543546405,334664193637,1004059689765,3012313287013,9037208296485,27112161760357 %N A305861 a(n) = 32*3^n - 2^(n+5) + 5. %H A305861 Takao Komatsu, <a href="https://arxiv.org/abs/1806.05515">On poly-Euler numbers of the second kind</a>, arXiv:1806.05515 [math.NT], 2018, page 11 (Lemma 3.4). %H A305861 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6). %F A305861 G.f.: (5 + 7*x - 2*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)). %F A305861 a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). %t A305861 Table[32 3^n - 2^(n + 5) + 5, {n, 0, 30}] %o A305861 (Magma) [32*3^n-2^(n+5)+5: n in [0..30]]; %o A305861 (PARI) a(n) = 32*3^n - 2^(n+5) + 5; \\ _Michel Marcus_, Jul 03 2018 %Y A305861 Cf. A000918. %K A305861 nonn,easy %O A305861 0,1 %A A305861 _Vincenzo Librandi_, Jun 15 2018