This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305869 #10 Feb 16 2025 08:33:54 %S A305869 1,1,3,18,123,1098,11806,150406,2218065,37206485,699604235, %T A305869 14572941915,333037896380,8283300923765,222714069807495, %U A305869 6436292165450693,198941178161054798,6548632634238445779,228705772883364303114,8446082393596031365629,328846269698068735291665,13462627492562640070346824 %N A305869 Expansion of Product_{k>=1} (1 + x^k)^(2*k-1)!!. %C A305869 Weigh transform of A001147. %H A305869 Alois P. Heinz, <a href="/A305869/b305869.txt">Table of n, a(n) for n = 0..404</a> %H A305869 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A305869 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DoubleFactorial.html">Double Factorial</a> %H A305869 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a> %F A305869 G.f.: Product_{k>=1} (1 + x^k)^A001147(k). %p A305869 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A305869 binomial(doublefactorial(2*i-1), j)*b(n-i*j, i-1), j=0..n/i))) %p A305869 end: %p A305869 a:= n-> b(n$2): %p A305869 seq(a(n), n=0..23); # _Alois P. Heinz_, Jun 13 2018 %t A305869 nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x] %t A305869 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}] %Y A305869 Cf. A001147, A261052, A305867, A305870. %K A305869 nonn %O A305869 0,3 %A A305869 _Ilya Gutkovskiy_, Jun 12 2018