This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305872 #16 Jun 14 2018 06:36:09 %S A305872 1,1,17,1259,200589,54766516,22839203295,13532959408258, %T A305872 10826939105517381,11256605684271733244,14762470788227855508388, %U A305872 23845795018908512860754771,46527914721396710095597849515,107904469663880176355586920421756,293401777662120053352713701982623322 %N A305872 Number of nonseparable rooted maps of genus n with one vertex and one face. %H A305872 Gheorghe Coserea, <a href="/A305872/b305872.txt">Table of n, a(n) for n = 0..200</a> %H A305872 T. R. S. Walsh, A. B. Lehman, <a href="https://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259. %F A305872 The g.f. A(x) satisfies A035319(x) = A[x*(A035319(x)^4)], where A035319 is the o.g.f. of A035319. %p A305872 g := 1+x ; %p A305872 for itr from 2 to 14 do %p A305872 g := g+a*x^itr; %p A305872 Ax := add(A035319(i)*x^i,i=0..itr+1) ; %p A305872 x*Ax^4 ; %p A305872 z := subs(x=%,g)-Ax ; %p A305872 z := expand(z) ; %p A305872 z := taylor(z,x=0,itr+1) ; %p A305872 z := convert(z,polynom) ; %p A305872 aa := solve(z,a) ; %p A305872 g := g-a*x^itr+aa*x^itr ; %p A305872 print(g) ; %p A305872 end do: %o A305872 (PARI) %o A305872 seq(N) = { %o A305872 my(s = 1+'x*Ser(vector(N, n, (4*n)!/((2*n+1)!*4^n)))); %o A305872 Vec(subst(s, 'x, serreverse('x*s^4))); %o A305872 }; %o A305872 seq(14) \\ _Gheorghe Coserea_, Jun 13 2018 %Y A305872 Cf. A035319. %K A305872 nonn %O A305872 0,3 %A A305872 _R. J. Mathar_, Jun 12 2018