cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305873 Coefficients of polynomials g_b(x) that arise in the generating function for rooted maps (A053979).

Original entry on oeis.org

1, 3, 5, 15, 65, 60, 105, 804, 1730, 1105, 945, 10824, 39110, 55645, 27120, 10395, 162357, 854250, 1987270, 2105070, 828250, 135135, 2714445, 19180410, 63897550, 108878610, 91692550, 30220800, 2027025, 50301360, 452984532, 2004435096, 4836052370, 6479714440, 4523710100, 1282031525
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2018

Keywords

Comments

The generating function of the b-th subdiagonal of A053979 is g_b(y)*(1-sqrt(1-4x))/2/(1-4x)^b, b>=0, where g_b(y) = 1 (b= 0 or 1), 3+5*y (b=2), 15+65*y+60*y^2 (b=3) etc are the coefficients in this table, and where y=(1/sqrt(1-4x)-1)/2.
The coefficient 794 cited by Walsh-Lehman (1972) has been corrected to 804.

Crossrefs

Cf. A062980 (diagonal), A001147 (first column)

Programs

  • Maple
    A305873:= proc(b,x)
        local gn1,k ;
        option remember;
        if b = 0 or b= 1 then
            return 1 ;
        else
            gn1 := procname(b-1,x) ;
            add(procname(k,x)*procname(b-k,x),k=1..b-1) ;
            gbx := %*x+(2*(b-1)*(1+2*x)+1)*gn1 ;
            expand(gbx+2*x*(x+1)*diff(gn1,x)) ;
        end if;
    end proc:
    for b from 1 to 8 do
        gx := A305873(b,x) ;
        for l from 0 to b-1 do
            printf("%d,",coeff(gx,x,l)) ;
        end do:
        printf("\n") ;
    end do:
  • Mathematica
    A305873[b_, x_] := A305873[b, x] = Module[{gn1, k, s}, If[b == 0 || b == 1, Return@1, gn1 = A305873[b - 1, x]; s = Sum[A305873[k, x]*A305873[b - k, x], {k, 1, b - 1}]; gbx = s*x + (2*(b - 1)*(1 + 2*x) + 1)*gn1; Expand[gbx + 2*x*(x + 1)*D[gn1, x]]]];
    Reap[For[b = 1, b <= 8, b++, gx = A305873[b, x]; For[l = 0, l <= b - 1, l++, Sow[Coefficient[gx, x, l]]]]][[2, 1]] (* Jean-François Alcover, Nov 09 2023, after Maple program *)