This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305874 #8 Apr 09 2020 19:32:22 %S A305874 1,6,2,24,20,3,81,128,45,4,250,672,417,84,5,732,3162,3090,1060,140,6, %T A305874 2073,13908,20136,10476,2305,216,7,5742,58520,120900,89600,29225,4494, %U A305874 315,8,15664,238832,686679,697224,316405,71016,8078,440,9 %N A305874 Triangle lc(n,k): the number of purely line-connected k-partitions of [n], n>=4, 3<=k<n. %H A305874 T. Mansour and A. O. Munagi, <a href="http://dx.doi.org/10.1016/j.ejc.2009.07.001">Block-connected set partitions</a>, European J. Combin., 31 (2010), 887-902, Table 3. %p A305874 A305874 := proc(n,k) %p A305874 if n = k then %p A305874 0; %p A305874 elif n=k+1 then %p A305874 k-2; %p A305874 elif n >= k+1 then %p A305874 k*procname(n-1,k)-procname(n-2,k)+(k-2)*combinat[stirling2](n-2,k-1) ; %p A305874 else %p A305874 0 ; %p A305874 end if; %p A305874 end proc: %p A305874 for n from 4 to 12 do %p A305874 for k from 3 to n-1 do %p A305874 printf("%d,",A305874(n,k)) ; %p A305874 end do: %p A305874 printf("\n") ; %p A305874 end do: %Y A305874 Cf. A005564 (subdiagonal), A047790 (column k=3) %K A305874 nonn,tabl,easy %O A305874 4,2 %A A305874 _R. J. Mathar_, Jun 12 2018