cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305879 Number of binary places to which n-th convergent of continued fraction expansion of Pi matches the correct value.

Original entry on oeis.org

2, 8, 13, 21, 28, 31, 28, 34, 32, 38, 40, 44, 47, 51, 52, 54, 57, 60, 62, 64, 70, 78, 80, 81, 84, 91, 94, 100, 103, 104, 107, 116, 121, 132, 133, 136, 133, 144, 148, 152, 148, 156, 158, 165, 167, 170, 173, 176, 179, 182
Offset: 1

Views

Author

A.H.M. Smeets, Jun 13 2018

Keywords

Comments

For the similar case of number of correct decimal places see A084407.
The denominator of the k-th convergent obtained from a continued fraction satisfying the Gauss-Kuzmin distribution will tend to exp(k*A100199), A100199 being the inverse of Lévy's constant; the error between the k-th convergent and the constant itself tends to exp(-2*k*A100199), or in binary digits 2*k*A100199/log(2) bits after the binary point.
The sequence for quaternary digits is obtained by floor(a(n)/2), the sequence for octal digits is obtained by floor(a(n)/3), the sequence for hexadecimal digits is obtained by floor(a(n)/4).

Examples

			Pi = 11.0010010000111111...
n=1: 3/1 = 11.000... so a(1) = 2
n=2: 22/7 = 11.001001001... so a(2) = 8
n=3: 333/106 = 11.00100100001110... so a(3) = 13
		

Crossrefs

Formula

Lim {n -> oo} (a(n)/n) = 2*log(A086702)/log(2) = 2*A100199/log(2) = 2*A305607.