A305884 Lexicographically first sequence of positive squares, no two or more of which sum to a square.
1, 1, 1, 4, 16, 25, 25, 324, 841, 1849, 2601, 14884, 18769, 103041, 292681, 774400, 3400336, 13307904, 34892649, 179399236, 582643044, 2008473856, 4369606609, 22833627664, 67113119844, 251608579236, 1240247504896, 3174109249609
Offset: 1
Examples
All terms are positive, so a(1) = 1; likewise, a(2) = a(3) = 1. a(4) cannot be 1, because the first 4 terms would then sum to 4 = 2^2; however, no two or more terms of {1, 1, 1, 4} sum to a square, so a(4) = 4. a(5) cannot also be 4, because 4 + 4 + 1 = 9 = 3^2, nor can it be 9, since 9 + 4 + 1 + 1 + 1 = 16 = 4^2, but a(5) = 16 satisfies the definition.
Programs
-
Mathematica
a = {1}; Do[n = Last@a; s = Select[Union[Total /@ Subsets[a^2]], # >= n &]; While[AnyTrue[s, IntegerQ@ Sqrt[n^2 + #] &], n++]; AppendTo[a, n], {14}]; a^2 (* Giovanni Resta, Jun 14 2018 *)
-
Python
from sympy import integer_nthroot from sympy.utilities.iterables import multiset_combinations A305884_list, n, m = [], 1, 1 while len(A305884_list) < 30: for l in range(1,len(A305884_list)+1): for d in multiset_combinations(A305884_list,l): if integer_nthroot(sum(d)+m,2)[1]: break else: continue break else: A305884_list.append(m) continue n += 1 m += 2*n-1 # Chai Wah Wu, Jun 19 2018
Extensions
a(25)-a(26) from Giovanni Resta, Jun 14 2018
a(27)-a(28) from Jon E. Schoenfield, Jul 21 2018
Comments