cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305899 Filter sequence related to factorization ("prime") signatures of Stern polynomials when factored over Z.

This page as a plain text file.
%I A305899 #8 Jul 01 2018 08:35:53
%S A305899 1,2,2,3,2,4,2,5,3,4,2,6,2,4,4,7,2,6,2,6,4,4,2,8,2,4,5,6,2,9,2,10,4,4,
%T A305899 4,11,2,4,4,8,2,9,2,6,6,4,2,12,3,4,4,6,2,8,2,8,4,4,2,13,2,4,9,14,2,9,
%U A305899 2,6,4,9,2,15,2,4,6,6,2,9,2,12,4,4,2,13,4,4,4,8,2,13,2,6,4,4,2,16,2,6,6,6,2,9,2,8,9
%N A305899 Filter sequence related to factorization ("prime") signatures of Stern polynomials when factored over Z.
%C A305899 Restricted growth sequence transform of A284011.
%H A305899 Antti Karttunen, <a href="/A305899/b305899.txt">Table of n, a(n) for n = 1..65537</a>
%o A305899 (PARI)
%o A305899 up_to = 65537;
%o A305899 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A305899 pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
%o A305899 A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
%o A305899 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From _Michel Marcus_
%o A305899 A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
%o A305899 A284011(n) = A284010(A260443(n));
%o A305899 v305899 = rgs_transform(vector(up_to, n, A284011(n)));
%o A305899 A305899(n) = v305899[n];
%Y A305899 Cf. A260443, A284011, A305898.
%Y A305899 Cf. also A304751.
%K A305899 nonn
%O A305899 1,2
%A A305899 _Antti Karttunen_, Jul 01 2018