cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305921 Lexicographically earliest sequence of nonnegative integers such that no three points (i,a(i)), (j,a(j)), (n,a(n)) are collinear and no four points (i,a(i)), (j,a(j)), (k,a(k)), (n,a(n)) are on a circle.

Original entry on oeis.org

0, 0, 1, 1, 5, 3, 8, 2, 3, 2, 4, 8, 9, 7, 15, 11, 4, 10, 5, 11, 16, 9, 30, 38, 26, 30, 18, 10, 28, 36, 17, 21, 38, 7, 12, 20, 49, 41, 23, 23, 6, 16, 28, 13, 6, 29, 49, 56, 17, 19, 36, 22, 24, 56, 64, 12, 61, 21, 14, 69, 13, 68, 78, 53, 33, 69, 39, 27, 31, 18
Offset: 1

Views

Author

Luca Petrone, Jun 14 2018

Keywords

Examples

			The sequence starts like A236266, but a(5) cannot be 4, because (1,0), (2,0), (4,1) and (5,4) lie on the same circle.
		

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = Module[{i, j, k, l, AB, AC, CD, BC, BD, AD, ok, ok1}, For[l = 0, True, l++, ok = True; For[j = n - 1, ok && j >= 1, j--, For[i = j - 1, ok && i >= 0, i--, ok = (n - j)*(a[j] - a[i]) != (j - i)*(l - a[j])]]; If[ok, For[k = n - 1, ok && k >= 1, k--, For[j = k - 1, ok && j >= 0, j--, For[i = j - 1, ok && i >= 0, i--, AB = ((a[i] - a[j])^2 + (i - j)^2)^0.5; AC = ((a[i] - a[k])^2 + (i - k)^2)^0.5; CD = ((a[k] - l)^2 + (k - n)^2)^0.5; BC = ((a[k] - a[j])^2 + (k - j)^2)^0.5; BD = ((a[j] - l)^2 + (j - n)^2)^0.5; AD = ((a[i] - l)^2 + (i - n)^2)^0.5; ok = AB*CD + BC*AD != AC*BD;];];]; If[ok, Return[l]]]]] (* Luca Petrone Jun 17 2018, based on A236266 program by Jean-François Alcover *)