cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305932 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 2^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 49, 51, 67, 72, 76, 77, 81, 86, 10, 11, 12, 17, 20, 21, 22, 23, 26, 29, 30, 38, 40, 41, 44, 45, 46, 47, 48, 50, 57, 58, 65, 66, 68, 71, 73, 74, 75, 84, 85, 95, 96, 122, 124, 129, 130, 149, 151, 184, 43, 53, 61, 69, 70
Offset: 0

Views

Author

M. F. Hasler, Jun 14 2018

Keywords

Comments

A partition of the nonnegative integers (the rows being the subsets).
Although it remains an open problem to provide a proof that the rows are complete (as are all terms of A020665), we can assume it for the purpose of this sequence.
Read as a flattened sequence, a permutation of the nonnegative integers.

Examples

			The table reads:
n \ k's
0 : 0, 1, ..., 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, (...), 81, 86 (cf. A007377)
1 : 10, 11, 12, 17, 20, 21, 22, 23, 26, 29, 30, 38, 40, 41, 44, (...), 151, 184
2 : 42, 52, 54, 55, 56, 59, 60, 62, 63, 64, 78, 80, 82, 92, 107, (...), 171, 231
3 : 43, 53, 61, 69, 70, 83, 87, 89, 90, 93, 109, 112, 114, 115, (...), 221, 359
4 : 79, 91, 94, 97, 106, 118, 126, 127, 137, 139, 157, 159, 170, (...), 241, 283
5 : 88, 98, 99, 103, 104, 113, 120, 143, 144, 146, 152, 158, 160, (...), 343, 357
...
Column 0 is A031146: least k such that 2^k has n digits '0' in base 10.
Row lengths = number of powers of 2 with exactly n '0's = (36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, 35, 29, 27, 27, 39, 34, 34, 28, 29, ...): not in the OEIS.
Largest number in row n = (86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, 696, 824, 634, 732, 890, 895, 848, 823, 929, 1092, ...): not in the OEIS.
Row number of n = Number of '0's in 2^n = A027870: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, ...).
Inverse permutation (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 37, 38, 10, 11, 12, 13, 39, 14, 15, 40, 41, 42, 43, 16, 17, 44, 18, 19, 45, 46, 20, 21, ...) is not in the OEIS.
		

Crossrefs

Sequence A027870 yields the row number of a given integer.
Cf. A305933 (analog for 3^n), A305924 (for 4^n), ..., A305929 (for 9^n).

Programs

  • Mathematica
    mx = 1000; g[n_] := g[n] = DigitCount[2^n, 10, 0]; f[n_] := Select[Range@mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    apply( A305932_row(n,M=200*(n+1))=select(k->A027870(k)==n,[0..M]), [0..20]) \\ A027870(k)=#select(d->!d, digits(2^k))

Formula

Row n = { k >= 0 | A027870(k) = n }.