cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305942 Number of powers of 2 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, 35, 29, 27, 27, 39, 34, 34, 28, 29, 31, 30, 38, 25, 35, 35, 36, 40, 32, 40, 43, 39, 32, 30, 30, 32, 36, 39, 23, 26, 31, 37, 27, 28, 33, 39, 28, 44, 34, 27, 43, 33, 27, 32, 31, 27, 27, 32, 35, 34, 36, 28, 32, 39, 38, 40, 28, 43, 38, 32, 22
Offset: 0

Views

Author

M. F. Hasler, Jun 21 2018

Keywords

Comments

a(0) = 36 is the number of terms in A007377 and in A238938, which includes the power 2^0 = 1.
These are the row lengths of A305932. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.
The average of the first 100000 terms is ~33.219 with a minimum of 12 and a maximum of 61. - Hans Havermann, Apr 26 2020

Crossrefs

Row lengths of A305932 (row n = exponents of 2^k with n '0's).
Cf. A007377 = {k | 2^k has no digit 0}; A238938: powers of 2 with no digit 0.
Cf. A298607: powers of 2 with the digit '0' in their decimal expansion.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A031146: least k such that 2^k has n digits 0 in base 10.
Cf. A071531: least r such that n^r has a digit 0, in base 10.
Cf. A306112: largest k such that 2^k has n digits 0, in base 10.

Programs

  • PARI
    A305942(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(2^k))==n)
    
  • PARI
    A305942_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(2^k)),nMax)]++);a[^-1]}