This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305992 #8 Oct 09 2019 16:28:38 %S A305992 1,2,4,8,15,24,32,48,62,80,101,122,147,171,202,230,267,299,339,377, %T A305992 418,464,509,559,611,664,719,776,836,896,960,1024,1098,1167,1240,1315, %U A305992 1392,1471,1553,1642,1724,1816,1906,1999,2094,2190,2290,2392,2499,2599,2713,2818,2937,3048,3166,3288 %N A305992 The sequence whose indicator function is I in conjectured formula A300997(n) = 2*n - Sum_{k=1..n} I(k), as long as the conjecture holds. %C A305992 A300997(n) is believed to be equal to 2*n - Sum_{k=1..n} I(k), where I is the indicator function of some other sequence -- let it be this sequence. This sequence is finite if the conjecture is false. %H A305992 Wikipedia, <a href="https://en.wikipedia.org/wiki/Indicator_function">Indicator function</a> %o A305992 (C) %o A305992 #include <stdio.h> %o A305992 #include <string.h> %o A305992 #define N 10000 %o A305992 void e(int *t, int *s) { %o A305992 int T[N], i = 0; memset(T, 0, sizeof(T)); %o A305992 while (i < *s) { %o A305992 int f = t[i] / 2; %o A305992 T[i] += f + (t[i] % 2); %o A305992 T[++ i] += f; %o A305992 } %o A305992 if (T[*s] != 0) { *s += 1; } %o A305992 for (i = 0; i < *s; i ++) { t[i] = T[i]; } %o A305992 } %o A305992 int f(int n) { %o A305992 int t[N], s = 1, i = 0; t[0] = n; %o A305992 while (s != n) { i ++; e(t, &s); } %o A305992 return 2 * n - i; %o A305992 } %o A305992 int main() { %o A305992 int n, last = 1, current; %o A305992 for (n = 1; n <= N; n ++) { %o A305992 current = f(n); %o A305992 switch (current - last) { %o A305992 case 0: break; %o A305992 case 1: printf("%d, ", n); fflush(stdout); break; %o A305992 default: fprintf(stderr, "CONJECTURE IS FALSE"); return; %o A305992 } %o A305992 last = current; %o A305992 } %o A305992 printf("\n"); %o A305992 } %Y A305992 Cf. A300997. %K A305992 nonn %O A305992 1,2 %A A305992 _Luc Rousseau_, Jun 16 2018