A306010 Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the number m when the sums S(m) are arranged in increasing order.
1, 2, 3, 4, 5, 7, 8, 6, 9, 11, 10, 13, 12, 16, 17, 15, 14, 19, 20, 18, 23, 21, 25, 27, 24, 22, 29, 28, 31, 32, 26, 33, 37, 35, 36, 41, 40, 34, 43, 30, 39, 47, 44, 45, 38, 49, 53, 48, 52, 51, 46, 55, 56, 59, 42, 61, 50, 57, 64, 63, 67, 54, 65, 71, 68, 58, 73
Offset: 1
Keywords
Examples
The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 terms of (a(n)) are 1,2,3,4,5,7,8,6.
Programs
-
Mathematica
z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]]; t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[{n, Total[t[n]]}, {n, 1, z}] v = SortBy[s, Last] v1 = Table[v[[n]][[1]], {n, 1, z}] (* A306010 *) w = Table[v[[n]][[2]], {n, 1, z}]; Numerator[w] (* A306011 *) Denominator[w] (* A306012 *)
Comments