This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306011 #12 Jun 25 2024 01:30:00 %S A306011 1,5,10,17,26,50,65,25,82,122,13,170,85,257,290,52,125,362,221,205, %T A306011 530,500,626,730,325,305,842,425,962,1025,425,1220,1370,260,697,1682, %U A306011 169,725,1850,130,1700,2210,1037,2132,905,2402,2810,1285,1445,2900,1325 %N A306011 Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the numerator of S(m) when all the numbers S(m) are arranged in increasing order. %e A306011 The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 numerators are 1,5,10,17,26,50,65,25. %t A306011 z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; %t A306011 k[n_] := Length[r[n]]; %t A306011 t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; %t A306011 s = Table[{n, Total[t[n]]}, {n, 1, z}] %t A306011 v = SortBy[s, Last] %t A306011 v1 = Table[v[[n]][[1]], {n, 1, z}] (* A306010 *) %t A306011 w = Table[v[[n]][[2]], {n, 1, z}]; %t A306011 Numerator[w] (* A306011 *) %t A306011 Denominator[w] (* A306012 *) %Y A306011 Cf. A077610, A229994, A229996, A305995, A306010, A306012. %K A306011 nonn %O A306011 1,2 %A A306011 _Clark Kimberling_, Jun 16 2018