A306012 Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the denominator of S(m) when all the numbers S(m) are arranged in increasing order.
1, 2, 3, 4, 5, 7, 8, 3, 9, 11, 1, 13, 6, 16, 17, 3, 7, 19, 10, 9, 23, 21, 25, 27, 12, 11, 29, 14, 31, 32, 13, 33, 37, 7, 18, 41, 4, 17, 43, 3, 39, 47, 22, 45, 19, 49, 53, 24, 26, 51, 23, 55, 28, 59, 21, 61, 5, 57, 64, 63, 67, 27, 1, 71, 2, 29, 73, 3, 36, 69
Offset: 1
Keywords
Examples
The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 denominators are 1,2,3,4,5,7,8,3.
Programs
-
Mathematica
z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]]; t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[{n, Total[t[n]]}, {n, 1, z}] v = SortBy[s, Last] v1 = Table[v[[n]][[1]], {n, 1, z}] (* A306010 *) w = Table[v[[n]][[2]], {n, 1, z}]; Numerator[w] (* A306011 *) Denominator[w] (* A306012 *)