This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306015 #23 Dec 19 2021 07:36:35 %S A306015 0,1,1,1,2,1,4,6,3,1,15,24,12,4,1,76,120,60,20,5,1,455,720,360,120,30, %T A306015 6,1,3186,5040,2520,840,210,42,7,1,25487,40320,20160,6720,1680,336,56, %U A306015 8,1,229384,362880,181440,60480,15120,3024,504,72,9,1 %N A306015 Exponential series expansion of (exp(x*y) + sinh(x) - cosh(x))/(1 - x). %C A306015 From _David Callan_, Dec 18 2021: (Start) %C A306015 For 0 <= k <= n, T(n,k) is the number of nonderangements of size n in which k of the fixed points are colored red. In particular, with D_n the derangement number A000166(n), T(n,0) = n! - D_n. For a general example, T(3,1) = 6 counts the colored permutations R23, R32, 1R3, 3R1, 12R, 21R where the red fixed points are indicated by "R". %C A306015 For n >= k >= 1, T(n,k) = n!/k!. Proof. In a colored permutation, such as 3R7R516 counted by T(n,k) with n = 7 and k = 2, the R's indicate (red) fixed points and so no information is lost by rank ordering the remaining entries while retaining the placement of the R's: 2R5R314. The result is a permutation of the set consisting of 1,2,...,n-k and k R's; there are n!/k! such permutations and the process is reversible. QED. (End) %H A306015 G. C. Greubel, <a href="/A306015/b306015.txt">Rows n=0..99 of triangle, flattened</a> %e A306015 n | k = 0 1 2 3 4 5 6 7 8 9 %e A306015 --+---------------------------------------------------------- %e A306015 0 | 0 %e A306015 1 | 1, 1 %e A306015 2 | 1, 2, 1 %e A306015 3 | 4, 6, 3, 1 %e A306015 4 | 15, 24, 12, 4, 1 %e A306015 5 | 76, 120, 60, 20, 5, 1 %e A306015 6 | 455, 720, 360, 120, 30, 6, 1 %e A306015 7 | 3186, 5040, 2520, 840, 210, 42, 7, 1 %e A306015 8 | 25487, 40320, 20160, 6720, 1680, 336, 56, 8, 1 %e A306015 9 | 229384, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1 %p A306015 gf := (exp(x*y) + sinh(x) - cosh(x))/(1 - x): %p A306015 ser := series(gf, x, 16): L := [seq(n!*coeff(ser, x, n), n=0..14)]: %p A306015 seq(seq(coeff(L[k+1], y, n), n=0..k), k=0..12); %t A306015 Join[{0}, With[{nmax = 15}, CoefficientList[CoefficientList[Series[ (Exp[x*y] + Sinh[x] - Cosh[x])/(1 - x), {x, 0, nmax}, {y, 0, nmax}], x], y ]*Range[0, nmax]!] // Flatten ] (* _G. C. Greubel_, Jul 18 2018 *) %Y A306015 A094587 with an extra first column A002467. %Y A306015 Row sums are A306150. %K A306015 nonn,tabl %O A306015 0,5 %A A306015 _Peter Luschny_, Jun 23 2018