This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306018 #15 Feb 09 2020 20:14:45 %S A306018 1,1,3,4,9,8,24,16,51,47,115,57,420,102,830,879,2962,298,15527,491, %T A306018 41275,80481,133292,1256,2038182,58671,2386862,24061887,23570088,4566, %U A306018 600731285,6843,1303320380,14138926716,1182784693,1820343112,542834549721,21638,31525806080 %N A306018 Number of non-isomorphic set multipartitions of weight n in which all parts have the same size. %C A306018 A set multipartition of weight n is a finite multiset of finite nonempty sets whose cardinalities sum to n. %C A306018 Number of distinct binary matrices with all row sums equal and total sum n, up to row and column permutations. - _Andrew Howroyd_, Sep 05 2018 %H A306018 Andrew Howroyd, <a href="/A306018/b306018.txt">Table of n, a(n) for n = 0..50</a> %F A306018 a(p) = A000041(p) + 1 for prime p. - _Andrew Howroyd_, Sep 06 2018 %F A306018 a(n) = Sum_{d|n} A331461(n/d, d). - _Andrew Howroyd_, Feb 09 2020 %e A306018 Non-isomorphic representatives of the a(6) = 24 set multipartitions in which all parts have the same size: %e A306018 {{1,2,3,4,5,6}} %e A306018 {{1,2,3},{1,2,3}} %e A306018 {{1,2,3},{4,5,6}} %e A306018 {{1,2,5},{3,4,5}} %e A306018 {{1,3,4},{2,3,4}} %e A306018 {{1,2},{1,2},{1,2}} %e A306018 {{1,2},{1,3},{2,3}} %e A306018 {{1,2},{3,4},{3,4}} %e A306018 {{1,2},{3,4},{5,6}} %e A306018 {{1,2},{3,5},{4,5}} %e A306018 {{1,3},{2,3},{2,3}} %e A306018 {{1,3},{2,4},{3,4}} %e A306018 {{1,4},{2,4},{3,4}} %e A306018 {{1},{1},{1},{1},{1},{1}} %e A306018 {{1},{1},{1},{2},{2},{2}} %e A306018 {{1},{1},{2},{2},{2},{2}} %e A306018 {{1},{1},{2},{2},{3},{3}} %e A306018 {{1},{2},{2},{2},{2},{2}} %e A306018 {{1},{2},{2},{3},{3},{3}} %e A306018 {{1},{2},{3},{3},{3},{3}} %e A306018 {{1},{2},{3},{3},{4},{4}} %e A306018 {{1},{2},{3},{4},{4},{4}} %e A306018 {{1},{2},{3},{4},{5},{5}} %e A306018 {{1},{2},{3},{4},{5},{6}} %o A306018 (PARI) \\ See A304942 for Blocks %o A306018 a(n)={sumdiv(n, d, Blocks(n/d, n, d))} \\ _Andrew Howroyd_, Sep 05 2018 %Y A306018 Cf. A000005, A000041, A001315, A007716, A038041, A049311, A283877, A298422, A304942, A306017, A306019, A306020, A306021, A331461. %K A306018 nonn %O A306018 0,3 %A A306018 _Gus Wiseman_, Jun 17 2018 %E A306018 Terms a(11) and beyond from _Andrew Howroyd_, Sep 05 2018