This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306022 #15 Feb 16 2025 08:33:54 %S A306022 1,1,3,10,38,163,774,4006,22376,133951,854402,5775948,41190317, %T A306022 308651432,2422315371,19856073597,169596622997,1506139073454, %U A306022 13879704561038,132488897335228,1307829322689944,13330635710335512,140118664473276174,1516899115597189064 %N A306022 Stirling transform of partitions numbers (A000041). %H A306022 Alois P. Heinz, <a href="/A306022/b306022.txt">Table of n, a(n) for n = 0..571</a> %H A306022 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a>. %F A306022 a(n) = Sum_{k=0..n} Stirling2(n,k)*A000041(k). %p A306022 a:= n-> add(combinat[numbpart](j)*Stirling2(n, j), j=0..n): %p A306022 seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 17 2018 %t A306022 Table[Sum[StirlingS2[n, k]*PartitionsP[k], {k, 0, n}], {n, 0, 25}] %o A306022 (PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*numbpart(k)); \\ _Michel Marcus_, Jun 17 2018 %Y A306022 Cf. A000041, A167137, A306023. %K A306022 nonn %O A306022 0,3 %A A306022 _Vaclav Kotesovec_, Jun 17 2018