This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306044 #46 Feb 05 2025 12:30:53 %S A306044 1,2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256,512,625,729,1024, %T A306044 2048,2187,3125,4096,6561,8192,15625,16384,19683,32768,59049,65536, %U A306044 78125,131072,177147,262144,390625,524288,531441,1048576,1594323,1953125,2097152,4194304,4782969,8388608 %N A306044 Powers of 2, 3 and 5. %C A306044 Union of A000079, A000244 and A000351. %H A306044 Michel Marcus, <a href="/A306044/b306044.txt">Table of n, a(n) for n = 1..1370</a> %F A306044 Sum_{n>=1} 1/a(n) = 11/4. - _Amiram Eldar_, Dec 10 2022 %p A306044 N:= 10^7: # for terms <= N %p A306044 sort(convert(`union`(seq({seq(b^i,i=0..ilog[b](N))},b=[2,3,5])),list)); # _Robert Israel_, Nov 18 2022 %t A306044 Union[2^Range[0, Log2[5^10]], 3^Range[Log[3, 5^10]], 5^Range[10]] %o A306044 (PARI) setunion(setunion(vector(logint(N=10^6,5)+1,k,5^(k-1)), vector(logint(N,3),k,3^k)), vector(logint(N,2),k,2^k)) \\ _M. F. Hasler_, Jun 24 2018 %o A306044 (PARI) a(n)= my(f=[2,3,5],q=sum(k=1,#f,1/log(f[k]))); for(i=1,#f, my(p=logint(exp(n/q),f[i]),d=0,j=0,m=0); while(j<n, m=f[i]^(p+d); j=1+sum(k=1,#f,logint(m,f[k])); if(j==n, return(m)); d++)) \\ _Ruud H.G. van Tol_, Nov 16 2022 (with the help of the pari-users mailing list) Observation: with f=primes(P), d <= logint(P,2). %o A306044 (Python) %o A306044 from sympy import integer_log %o A306044 def A306044(n): %o A306044 def bisection(f,kmin=0,kmax=1): %o A306044 while f(kmax) > kmax: kmax <<= 1 %o A306044 kmin = kmax >> 1 %o A306044 while kmax-kmin > 1: %o A306044 kmid = kmax+kmin>>1 %o A306044 if f(kmid) <= kmid: %o A306044 kmax = kmid %o A306044 else: %o A306044 kmin = kmid %o A306044 return kmax %o A306044 def f(x): return n+x-x.bit_length()-integer_log(x,3)[0]-integer_log(x,5)[0] %o A306044 return bisection(f,n,n) # _Chai Wah Wu_, Feb 05 2025 %Y A306044 Cf. A000079, A000244, A000351, A006899. %Y A306044 Cf. A226722, A226723, A226724. %K A306044 nonn %O A306044 1,2 %A A306044 _Zak Seidov_, Jun 18 2018