A306045 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k).
1, 2, 10, 74, 682, 7562, 98410, 1463114, 24367402, 449039882, 9069093610, 199050295754, 4713774570922, 119735740542602, 3246094020405610, 93519923311825994, 2852458136048627242, 91805618091515859722, 3108657616523130770410, 110453876295411957125834
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..410
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k) / (1 - (Exp[x] - 1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
Formula
a(n) = Sum_{k=0..n} Stirling2(n,k) * A015128(k) * k!.
a(n) ~ n! * exp(Pi^2 * (1 - log(2)) / (16*log(2)) + Pi * sqrt(n/(2*log(2)))) / (8*n*(log(2))^n).
Comments