This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306072 #11 Jun 18 2020 04:07:02 %S A306072 4,0,5,2,3,7,0,3,1,4,4,4,2,2,3,9,2,5,0,8,5,9,6,5,0,9,9,1,1,2,1,8,5,2, %T A306072 3,4,1,0,4,4,1,4,1,7,2,4,0,4,1,9,8,4,9,2,6,2,3,4,6,3,6,2,9,7,7,5,3,7, %U A306072 9,8,9,0,1,8,1,8,6,4,0,3,8,0,4,8,7,4,2,6,4,6,6,4,3,9,3,6,8,4,0,6,3,7,7,7,8,4 %N A306072 Decimal expansion of 2 * Sum_{p prime}(p^2-p-1)*log(p)/(p^4+2*p^3+1). %C A306072 The constant B that appears in the asymptotic formula for the sum of the bi-unitary divisor function (A306069). %e A306072 0.405237031444223925085965099112185234104414172404198492623463629775379... %t A306072 cc = CoefficientList[Series[(p^2 - p - 1)/(p^4 + 2*p^3 + 1) /. p -> 1/x, {x, 0, 30}], x]; f = FindSequenceFunction[cc]; digits = 20; B = 2 NSum[f[n + 1 // Round]*(-PrimeZetaP'[n]), {n, 2, Infinity}, Method -> "AlternatingSigns", NSumTerms -> 10 digits, WorkingPrecision -> 5 digits]; RealDigits[B, 10, digits][[1]] (* _Jean-François Alcover_, Jun 19 2018 *) %t A306072 ratfun = 2*(p^2 - p - 1)/(p^4 + 2*p^3 + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}] (* _Vaclav Kotesovec_, Jun 17 2020 *) %Y A306072 Cf. A085609, A306069, A335705, A335707. %K A306072 nonn,cons %O A306072 0,1 %A A306072 _Amiram Eldar_, Jun 19 2018 %E A306072 a(1)-a(20) from _Jean-François Alcover_, Jun 19 2018 %E A306072 More digits from _Vaclav Kotesovec_, Jun 17 2020