A306075 Bases in which 7 is a unique-period prime.
2, 3, 4, 5, 6, 8, 13, 18, 19, 27, 48, 50, 55, 97, 111, 195, 223, 342, 344, 391, 447, 685, 783, 895, 1371, 1567, 1791, 2400, 2402, 2743, 3135, 3583, 4801, 5487, 6271, 7167, 9603, 10975, 12543, 14335, 16806, 16808, 19207, 21951, 25087, 28671, 33613, 38415, 43903, 50175
Offset: 1
Examples
1/7 has period length 3 in base 2. Note that 7 is the only prime factor of 2^3 - 1 = 7, so 7 is a unique-period prime in base 2. 1/7 has period length 3 in base 4. Note that 3, 7 are the only prime factors of 4^3 - 1 = 63, but 1/3 has period length 1, so 7 is a unique-period prime in base 4. 1/7 has period length 3 in base 18. Note that 7, 17 are the only prime factors of 18^3 - 1 = 5831, but 1/17 has period length 1, so 7 is a unique-period prime in base 18. (1/7 has period length 6 in base 3, 5, 19. Similar demonstrations can be found.)
Links
- Jianing Song, Table of n, a(n) for n = 1..448
- Wikipedia, Unique prime
Crossrefs
Programs
-
PARI
p = 7; gpf(n)=if(n>1, vecmax(factor(n)[, 1]), 1); test(n, q)=while(n%p==0, n/=p); if(q>1, while(n%q==0, n/=q)); n==1; for(n=2, 10^6, if(gcd(n, p)==1, if(test(polcyclo(znorder(Mod(n, p)), n), gpf(znorder(Mod(n, p)))), print1(n, ", "))));
Comments