A306073 Bases in which 3 is a unique-period prime.
2, 4, 5, 8, 10, 11, 17, 23, 26, 28, 35, 47, 53, 71, 80, 82, 95, 107, 143, 161, 191, 215, 242, 244, 287, 323, 383, 431, 485, 575, 647, 728, 730, 767, 863, 971, 1151, 1295, 1457, 1535, 1727, 1943, 2186, 2188, 2303, 2591, 2915, 3071, 3455, 3887
Offset: 1
Examples
If b = 3^t + 1, t >= 1, then b - 1 only has prime factor 3, so 3 is a unique-period prime in base b. If b = 2^s*3^t - 1, t >= 1, then the prime factors of b^2 - 1 are 3 and prime factors of b - 1 = 2^s*3^t - 2, 3 is the only new prime factor so 3 is a unique-period prime in base b.
Links
- Jianing Song, Table of n, a(n) for n = 1..805
- Wikipedia, Unique prime
Crossrefs
Programs
-
PARI
p = 3; gpf(n)=if(n>1, vecmax(factor(n)[, 1]), 1); test(n, q)=while(n%p==0, n/=p); if(q>1, while(n%q==0, n/=q)); n==1; for(n=2, 10^6, if(gcd(n, p)==1, if(test(polcyclo(znorder(Mod(n, p)), n), gpf(znorder(Mod(n, p)))), print1(n, ", "))));
Comments