This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306078 #9 Feb 16 2025 08:33:54 %S A306078 1,2,0,0,0,2,6,5,2,3,9,8,7,3,9,1,5,1,8,9,0,2,9,6,2,1,0,0,4,1,4,6,0,1, %T A306078 5,6,7,2,4,0,6,1,8,1,5,1,9,9,9,8,5,1,0,6,7,9,2,4,3,9,9,8,3,9,8,8,6,0, %U A306078 7,3,1,1,3,4,4,2,5,2,4,0,9,6,4,4,2,4,6,1,7,2,7,8,8,4,9,6,9,9,1,0 %N A306078 Decimal expansion of the third smallest known Salem number. %H A306078 M. J. Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a> %H A306078 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/SalemConstants.html">Salem Constants.</a> %H A306078 Wikipedia, <a href="http://en.wikipedia.org/wiki/Salem_number">Salem number</a> %H A306078 <a href="/index/Al#algebraic_14">Index entries for algebraic numbers, degree 14</a>. %e A306078 1.200026523987391518902962100414601567240618151999851067924399839886... %t A306078 c1 = {1, 0, 0, -1, -1, 0, 0, 1}; %t A306078 c2 = Join[c1, Reverse[Most[c1]]]; %t A306078 p = (x^Range[0, Length[c2]-1]). c2; %t A306078 sigma3 = Root[p, x, 2]; %t A306078 RealDigits[sigma3, 10, 100][[1]] %o A306078 (PARI) polrootsreal(x^14 - x^11 - x^10 + x^7 - x^4 - x^3 + 1)[2] \\ _Charles R Greathouse IV_, Feb 11 2025 %Y A306078 Cf. A073011 (sigma1), A219300 (sigma2), A306079 (sigma4). %K A306078 nonn,cons %O A306078 1,2 %A A306078 _Jean-François Alcover_, Jun 19 2018