A306101 Square array T(n,k) = number of plane partitions of n with parts colored in (at most) k colors; n, k >= 1; read by antidiagonals.
1, 2, 3, 3, 10, 6, 4, 21, 34, 13, 5, 36, 102, 122, 24, 6, 55, 228, 525, 378, 48, 7, 78, 430, 1540, 2334, 1242, 86, 8, 105, 726, 3605, 8964, 11100, 3690, 160, 9, 136, 1134, 7278, 25980, 56292, 47496, 11266, 282, 10, 171, 1672, 13237, 62574, 203280, 316388, 210756, 32666, 500, 11, 210, 2358, 22280, 132258, 586878, 1417530
Offset: 1
Examples
The array starts: [ 1 2 3 4 5 ...] = A000027 [ 3 10 21 36 55 ...] = A014105 [ 6 34 102 228 430 ...] = A067389 [ 13 122 525 1540 3605 ...] [ 24 378 2334 8964 25980 ...] [ 48 1242 11100 56292 203280 ...] A000219 A306099 A306093 A306094 A306094 For concrete examples, see A306099 and A306093.
Links
- Alois P. Heinz, Antidiagonals n = 1..50, flattened
Crossrefs
Formula
T(n,k) = Sum_{j=1..n} A091298(n,j)*k^j.
Comments