cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058957 Numbers having at least two representations as b^2 - c^2 with b > c >= 0.

Original entry on oeis.org

9, 15, 16, 21, 24, 25, 27, 32, 33, 35, 36, 39, 40, 45, 48, 49, 51, 55, 56, 57, 60, 63, 64, 65, 69, 72, 75, 77, 80, 81, 84, 85, 87, 88, 91, 93, 95, 96, 99, 100, 104, 105, 108, 111, 112, 115, 117, 119, 120, 121, 123, 125, 128, 129, 132, 133, 135, 136, 140, 141, 143
Offset: 1

Views

Author

Henry Bottomley, Jan 13 2001

Keywords

Comments

This is the union of the squares > 4 and A306102: numbers that are the difference of two positive squares in at least two ways (where c=0 is excluded). - M. F. Hasler, Jul 12 2018

Examples

			9 is in the sequence since 9 = 3^2 - 0^2 = 5^2 - 4^2;
45 is in the sequence since 45 = 7^2 - 2^2 = 9^3 - 6^2 = 23^2 - 22^2.
		

Crossrefs

Cf. A306102 (subsequence and variant using c > 0).

Programs

  • Mathematica
    Select[Range@143, Length@ FindInstance[x^2 - y^2 == # && x>y>= 0, {x, y}, Integers, 2] == 2 &] (* Giovanni Resta, Jul 10 2018 *)
  • PARI
    select( is(n)=fordiv(n, d, d^2 > n && return; (n-d^2)%(2*d) || c++<2 || return(1)), [1..200]) \\ M. F. Hasler, Jul 10 2018

Formula

A058957 = { n | A034178(n) >= 2 }. - M. F. Hasler, Jul 10 2018

Extensions

Name edited by M. F. Hasler, Jul 10 2018

A306103 Numbers that are the difference of two positive squares in at least three ways.

Original entry on oeis.org

45, 48, 63, 72, 75, 80, 96, 99, 105, 112, 117, 120, 128, 135, 144, 147, 153, 160, 165, 168, 171, 175, 176, 180, 189, 192, 195, 200, 207, 208, 216, 224, 225, 231, 240, 243, 245, 252, 255, 256, 261, 264, 272, 273, 275, 279, 280, 285, 288, 297, 300
Offset: 1

Views

Author

Geoffrey B. Campbell and M. F. Hasler, Jul 10 2018

Keywords

Comments

Numbers n such that A100073(n) >= 3; see there for more information & formulas.

Examples

			48 = 7^2 - 1^2 = 8^2 - 4^2 = 13^2 - 11^2.
		

Crossrefs

Subsequence of A306102. Contains A306104 as a subsequence.

Programs

  • Mathematica
    Select[Range[300], Length[FindInstance[x^2 - y^2 == # && x>y>0, {x,y}, Integers, 3 ]] == 3 &] (* Giovanni Resta, Jul 10 2018 *)
  • PARI
    select( is(n)=A100073(n)>2, [1..300])

Formula

A306103 = { n = 2k+1 | A056924(n) > 2 } U { n = 4k | A056924(n/4) > 2 }.

A306104 Numbers that are the difference of two positive squares in at least four ways.

Original entry on oeis.org

96, 105, 120, 135, 144, 160, 165, 168, 189, 192, 195, 216, 224, 225, 231, 240, 255, 264, 273, 280, 285, 288, 297, 312, 315, 320, 336, 345, 351, 352, 357, 360, 375, 384, 385, 399, 400, 405, 408, 416, 420, 429, 432, 435, 440, 441, 448, 455, 456, 459, 465, 480, 483, 495
Offset: 1

Views

Author

Geoffrey B. Campbell and M. F. Hasler, Jul 10 2018

Keywords

Comments

Numbers n such that A100073(n) >= 4; see there for more information & formulas.

Examples

			96 = 10^2 - 2^2 = 11^2 - 5^2 = 14^2 - 10^2 = 25^2 - 23^2.
		

Crossrefs

Subsequence of A306103, A306102 and A058957.

Programs

  • Mathematica
    Select[Range@495, Length@ FindInstance[x^2 - y^2 == # && x>y>0, {x, y}, Integers, 4] == 4 &] (* Giovanni Resta, Jul 10 2018 *)
  • PARI
    select( is(n)=A100073(n)>3, [1..500])

Formula

A306104 = { n = 2k+1 | A056924(n) > 3 } U { n = 4k | A056924(n/4) > 3 }.
Showing 1-3 of 3 results.