A306113 Largest k such that 3^k has exactly n digits 0 (in base 10), conjectured.
68, 73, 136, 129, 205, 237, 317, 268, 251, 276, 343, 372, 389, 419, 565, 416, 494, 571, 637, 628, 713, 629, 638, 655, 735, 690, 862, 802, 750, 863, 826, 996, 976, 1008, 1085, 1026, 1130, 995, 962, 1082, 1136, 1064, 1176, 1084, 1215, 1354, 1298, 1275, 1226, 1468, 1353
Offset: 0
Links
- M. F. Hasler, Zeroless powers, OEIS Wiki, March 2014, updated 2018.
- T. Khovanova, The 86-conjecture, Tanya Khovanova's Math Blog, Feb. 2011.
- W. Schneider, No Zeros, 2000, updated 2003. (On web.archive.org--see A007496 for a cached copy.)
Crossrefs
Cf. A063555: least k such that 3^k has n digits 0 in base 10.
Cf. A305943: number of k's such that 3^k has n digits 0.
Cf. A305933: row n lists exponents of 3^k with n digits 0.
Cf. A030700: { k | 3^k has no digit 0 } : row 0 of the above.
Cf. A238939: { 3^k having no digit 0 }.
Cf. A305930: number of 0's in 3^n.
Programs
-
PARI
A306113_vec(nMax,M=99*nMax+199,x=3,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}
Comments