A305926 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 6^k has n digits '0' (conjectured).
0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 24, 29, 44, 10, 11, 14, 15, 18, 22, 28, 40, 42, 59, 9, 16, 20, 21, 26, 30, 31, 33, 37, 38, 39, 45, 46, 49, 51, 53, 63, 13, 23, 25, 27, 32, 34, 35, 36, 47, 48, 54, 61, 72, 73, 76, 82, 19, 52, 60, 64, 65, 70, 71, 83, 91, 93, 98, 43, 50
Offset: 0
Examples
The table reads: n \ k's 0 : 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 24, 29, 44 (= A030702) 1 : 10, 11, 14, 15, 18, 22, 28, 40, 42, 59 2 : 9, 16, 20, 21, 26, 30, 31, 33, 37, 38, 39, 45, 46, 49, 51, 53, 63 3 : 13, 23, 25, 27, 32, 34, 35, 36, 47, 48, 54, 61, 72, 73, 76, 82 4 : 19, 52, 60, 64, 65, 70, 71, 83, 91, 93, 98 5 : 43, 50, 55, 58, 62, 66, 67, 75, 77, 78, 101, 106, 129, 134 ... Column 0 is A063596: least k such that 6^k has n digits '0' in base 10. Row lengths are 14, 10, 17, 16, 11, 14, 10, 8, 12, 19, 9, 16, 13, 11, 10, 10, 11, 10, 10, 17, ... (A305946). Last terms of the rows yield (44, 59, 63, 82, 98, 134, 108, 123, 199, 189, 192, 200, 275, 282, 267, 307, 298, 296, 391, 338, ...), A306116. The inverse permutation is (0, 1, 2, 3, 4, 5, 6, 7, 8, 24, 14, 15, 9, 41, 16, 17, 25, 10, 18, 57, 26, 27, 19, 42, 11, 43, 28, 44, 20, 12, 29, 30, ...), not in OEIS.
Links
- M. F. Hasler, Zeroless powers.. OEIS Wiki, March 2014.
Crossrefs
Programs
-
Mathematica
mx = 1000; g[n_] := g[n] = DigitCount[6^n, 10, 0]; f[n_] := Select[Range@mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018 *)
-
PARI
apply( A305926_row(n,M=50*(n+1))=select(k->#select(d->!d,digits(6^k))==n,[0..M]), [0..19])
Comments