cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A305927 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 7^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 10, 11, 19, 35, 4, 5, 8, 12, 14, 15, 18, 27, 43, 47, 51, 9, 16, 17, 20, 24, 26, 28, 29, 34, 38, 52, 93, 13, 21, 22, 23, 30, 31, 36, 37, 42, 44, 46, 49, 58, 25, 32, 33, 50, 53, 54, 59, 66, 122, 55, 56, 57, 61, 62, 64, 67, 72, 73, 74, 39, 40, 48, 60, 71, 77, 79, 96, 108
Offset: 0

Views

Author

M. F. Hasler, Jun 19 2018

Keywords

Comments

The set of (nonempty) rows forms a partition of the nonnegative integers.
Read as a flattened sequence, a permutation of the nonnegative integers.
In the same way, another choice of (basis, digit, base) = (m, d, b) different from (7, 0, 10) will yield a similar partition of the nonnegative integers, trivial if m is a multiple of b.
It remains an open problem to provide a proof that the rows are complete, in the same way as each of the terms of A020665 is unproved.
We can also decide that the rows are to be truncated as soon as no term is found within a sufficiently large search limit. (For all of the displayed rows, there is no additional term up to many orders of magnitude beyond the last term.) That way the rows are well-defined, but it is no longer guaranteed to have a partition of the integers.
The author considers "nice", i.e., appealing, the idea of partitioning the integers in such an elementary yet highly nontrivial way, and the remarkable fact that the rows are just roughly one line long. Will this property remain for large n, or else, how will the row lengths evolve?

Examples

			The table reads:
n \ k's
0 : 0, 1, 2, 3, 6, 7, 10, 11, 19, 35 (= A030703)
1 : 4, 5, 8, 12, 14, 15, 18, 27, 43, 47, 51
2 : 9, 16, 17, 20, 24, 26, 28, 29, 34, 38, 52, 93
3 : 13, 21, 22, 23, 30, 31, 36, 37, 42, 44, 46, 49, 58
4 : 25, 32, 33, 50, 53, 54, 59, 66, 122
5 : 55, 56, 57, 61, 62, 64, 67, 72, 73, 74
...
Column 0 is A063606: least k such that 7^k has n digits '0' in base 10.
Row lengths are 10, 11, 12, 13, 9, 10, 9, 7, 10, 14, 21, 10, 18, 7, 11, 11, 12, 15, 17, 10, ... (A305947).
Last term of the rows are (35, 51, 93, 58, 122, 74, 108, 131, 118, 152, 195, 192, 236, 184, 247, 243, 254, 286, 325, 292, ...), A306117.
The inverse permutation is (0, 1, 2, 3, 10, 11, 4, 5, 12, 21, 6, 7, 13, 33, 14, 15, 22, 23, 16, 8, 24, 34, 35, 36, 25, 46, 26, 17, 27, 28, 37, ...), not in OEIS.
Number of '0's in 7^n = row number of n: (0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 2, 1, 0, 2, 3, 3, 3, 2, 4, 2, 1, 2, 2, 3, 3, 4, 4, ...), not in OEIS.
Number of '0's in 7^n = row number of n: (0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 2, 1, 0, 2, 3, 3, 3, 2, 4, 2, 1, 2, 2, 3, 3, 4, 4, ...), not in OEIS.
		

Crossrefs

Cf. A305932 (analog for 2^k), A305933 (analog for 3^k), A305924 (analog for 4^k), ..., A305929 (analog for 9^k).

Programs

  • Mathematica
    mx = 1000; g[n_] := g[n] = DigitCount[7^n, 10, 0]; f[n_] := Select[Range@mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    apply( A305927_row(n,M=50*(n+1))=select(k->#select(d->!d,digits(7^k))==n,[0..M]), [0..19])
Showing 1-1 of 1 results.