This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306146 #59 Feb 19 2020 07:23:59 %S A306146 1,14,22,28,44,46,56,75,88,92,94,112,118,166,176,184,188,214,224,236, %T A306146 332,334,352,358,368,375,376,422,428,448,454,472,526,639,662,664,668, %U A306146 694,704,716,718,736,752,766,844,856,867,896,908,926,934,944,958,1006,1052,1075,1094,1126,1142,1174,1179,1324 %N A306146 Numbers k such that A000010(A023900(k)) = A023900(A000010(k)). %C A306146 No term is a product of an odd number of distinct prime factors (because then A023900 is negative, i.e., contains no terms from A030230). %C A306146 For known terms: %C A306146 - a(n) is nonsquarefree iff A000010(n) is nonsquarefree. %C A306146 - If a(n) is squarefree then A000010(n) and A023900(n) are both squarefree. %H A306146 Amiram Eldar, <a href="/A306146/b306146.txt">Table of n, a(n) for n = 1..10000</a> %e A306146 75 is a term because A000010(A023900(75)) = A023900(A000010(75)) = 4. %p A306146 isA306146 := proc(n) %p A306146 local a239 ; %p A306146 a239 := A023900(n) ; %p A306146 if a239 >= 1 then %p A306146 simplify( numtheory[phi](a239) = A023900(numtheory[phi](n)) ); %p A306146 else %p A306146 false; %p A306146 end if; %p A306146 end proc: %p A306146 for n from 1 to 1000 do %p A306146 if isA306146(n) then %p A306146 printf("%d,",n) ; %p A306146 end if; %p A306146 end do: # _R. J. Mathar_, Feb 14 2019 %t A306146 f[p_, e_] := 1 - p; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1324],(d1 = d[#]) > 0 && d[EulerPhi[#]] == EulerPhi[d1] &] (* _Amiram Eldar_, Feb 19 2020 *) %o A306146 (PARI) a023900(n) = sumdivmult(n, d, d*moebius(d)) %o A306146 is(n) = sdm = a023900(n); if(sdm < 0, return(0), sdmphi = a023900(eulerphi(n)); eulerphi(sdm) == sdmphi) \\ _David A. Corneth_, Aug 17 2018 %Y A306146 Cf. A000010, A023900, A030230. %K A306146 nonn %O A306146 1,2 %A A306146 _Torlach Rush_, Aug 11 2018