cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306186 Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.

This page as a plain text file.
%I A306186 #11 May 11 2021 17:22:31
%S A306186 1,2,1,3,4,1,5,10,6,1,7,33,21,8,1,11,91,104,36,10,1,15,298,452,238,55,
%T A306186 12,1,22,910,2335,1430,455,78,14,1,30,3017,11992,10179,3505,775,105,
%U A306186 16,1,42,9945,66810,74299,31881,7297,1218,136,18,1,56
%N A306186 Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.
%e A306186 Array begins:
%e A306186       k=1:  k=2:  k=3:  k=4:  k=5:  k=6:
%e A306186   n=1:  1     1     1     1     1     1
%e A306186   n=2:  2     4     6     8    10    12
%e A306186   n=3:  3    10    21    36    55    78
%e A306186   n=4:  5    33   104   238   455   775
%e A306186   n=5:  7    91   452  1430  3505  7297
%e A306186   n=6: 11   298  2335 10179 31881 80897
%e A306186 Non-isomorphic representatives of the A(3,3) = 21 multiset partitions:
%e A306186   {{111}}          {{112}}          {{123}}
%e A306186   {{1}{11}}        {{1}{12}}        {{1}{23}}
%e A306186   {{1}}{{11}}      {{2}{11}}        {{1}}{{23}}
%e A306186   {{1}{1}{1}}      {{1}}{{12}}      {{1}{2}{3}}
%e A306186   {{1}}{{1}{1}}    {{1}{1}{2}}      {{1}}{{2}{3}}
%e A306186   {{1}}{{1}}{{1}}  {{2}}{{11}}      {{1}}{{2}}{{3}}
%e A306186                    {{1}}{{1}{2}}
%e A306186                    {{2}}{{1}{1}}
%e A306186                    {{1}}{{1}}{{2}}
%t A306186 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A306186 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A306186 undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]];
%t A306186 expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Apply[Rule,Table[{undats[m][[i]],i},{i,Length[undats[m]]}],{1}]],First[Sort[expnorm[m,1]]]]];
%t A306186 expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#1>=aft&]}]},Union@@(expnorm[#1,aft+1]&)/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,_[___]]],{par,First/@Position[mx,Max[mx]]}]]]];
%t A306186 strnorm[n_]:=(Flatten[MapIndexed[Table[#2,{#1}]&,#1]]&)/@IntegerPartitions[n];
%t A306186 kmp[n_,k_]:=kmp[n,k]=If[k==1,strnorm[n],Union[expnorm/@Join@@mps/@kmp[n,k-1]]];
%t A306186 Table[Length[kmp[sum-k,k]],{sum,1,7},{k,1,sum-1}]
%Y A306186 Columns: A000041 (k=1), A007716 (k=2), A318566 (k=3).
%Y A306186 Rows: A000012 (n=1), A005843 (n=2), A014105 (n=3).
%Y A306186 Cf. A002846, A096751, A144150, A290353, A317533, A317791, A323718, A323719.
%K A306186 nonn,tabl,more
%O A306186 1,2
%A A306186 _Gus Wiseman_, Jan 27 2019
%E A306186 a(46)-a(56) from _Robert Price_, May 11 2021