cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306198 Multiplicative with a(p^e) = p^(e-1)*(p^2 - p - 1).

Original entry on oeis.org

1, 1, 5, 2, 19, 5, 41, 4, 15, 19, 109, 10, 155, 41, 95, 8, 271, 15, 341, 38, 205, 109, 505, 20, 95, 155, 45, 82, 811, 95, 929, 16, 545, 271, 779, 30, 1331, 341, 775, 76, 1639, 205, 1805, 218, 285, 505, 2161, 40, 287, 95, 1355, 310, 2755, 45, 2071, 164, 1705, 811
Offset: 1

Views

Author

Jianing Song, Jan 28 2019

Keywords

Comments

For any positive integer n and any m coprime to n, define R(n,m) = Product_{primes p divides n} (p - [m == 1 (mod p)]), where [] is an Iverson branket. Then we have the following conjecture: (Start)
Let k == 2, 3 (mod 4) be a squarefree number, b be any positive integer such that k*b^2 is not a perfect power and not equal to -1, n be either coprime to or divisible by 4*k. Define Q(N,k*b^2,n,m) = # {primes p <= N : p == m (mod n), k*b^2 is a primitive modulo p}, then:
(a) if gcd(n, 4*k) = 1, then Q(N,k*b^2,n,m)/(C*PrimePi(N)) ~ R(n,m)/a(n);
(b) if 4*k divides n, then Q(N,k*b^2,n,m)/(C*PrimePi(N)) ~ 2*R(n,m)/a(n) if Jacobi(k/m) = -1 and 0 if Jacobi(k/m) = +1,
Where C is the Artin's constant = A005596, PrimePi = A000720. (End)
(Note that Sum_{m=1..n, gcd(m,n)=1} R(n,m) = a(n).)
For example, let N = 10^6:
k*b^2 | n | m | Q(N,k*b^2,n,m) | Q(N,k*b^2,n,m)/(C*PrimePi(N))
2 | 8 | 3 | 14642 | 0.498794... approx = 2/4
3 | 5 | 1 | 6192 | 0.210936... approx = 4/19
-2 | 48 | 13 | 2933 | 0.099915... approx = 4/40
-5 | 9 | 5 | 5933 | 0.202113... approx = 3/15

Crossrefs

Cf. A000720 (PrimePi), A005596 (Artin's constant), A086463.

Programs

  • Maple
    P := (p, e) -> p^(e-1)*(p^2 - p - 1):
    a := n -> mul(P(f[1], f[2]), f in ifactors(n)[2]):
    seq(a(n), n=1..58); # Peter Luschny, Feb 13 2019
  • Mathematica
    a[n_] := Product[{p, e} = pe; p^(e-1) (p^2-p-1), {pe, FactorInteger[n]}]; a[1] = 1; Array[a, 58] (* Jean-François Alcover, Jul 22 2019 *)
  • PARI
    a(n) = my(f=factor(n)); prod(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); (p^2 - p - 1)*p^(e-1))

Formula

Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/18) * Product_{p prime} (1 - 3/p^2 + 1/p^3 + 1/p^4) = 0.1314639252... . - Amiram Eldar, Dec 01 2022