This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306200 #17 May 10 2021 07:40:41 %S A306200 0,1,1,2,4,8,18,41,98,237,591,1488,3805,9820,25593,67184,177604, %T A306200 472177,1261998,3388434,9136019,24724904,67141940,182892368,499608724, %U A306200 1368340326,3756651116,10336434585,28499309291,78727891420,217870037932,603934911859,1676720329410 %N A306200 Number of unlabeled rooted semi-identity trees with n nodes. %C A306200 A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. %H A306200 Alois P. Heinz, <a href="/A306200/b306200.txt">Table of n, a(n) for n = 0..2166</a> %e A306200 The a(1) = 1 through a(7) = 8 trees: %e A306200 o (o) (oo) (ooo) (oooo) (ooooo) %e A306200 ((o)) ((oo)) ((ooo)) ((oooo)) %e A306200 (o(o)) (o(oo)) (o(ooo)) %e A306200 (((o))) (oo(o)) (oo(oo)) %e A306200 (((oo))) (ooo(o)) %e A306200 ((o(o))) (((ooo))) %e A306200 (o((o))) ((o)(oo)) %e A306200 ((((o)))) ((o(oo))) %e A306200 ((oo(o))) %e A306200 (o((oo))) %e A306200 (o(o(o))) %e A306200 (oo((o))) %e A306200 ((((oo)))) %e A306200 (((o(o)))) %e A306200 ((o)((o))) %e A306200 ((o((o)))) %e A306200 (o(((o)))) %e A306200 (((((o))))) %p A306200 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A306200 add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)) %p A306200 end: %p A306200 a:= n-> `if`(n=0, 0, b(n-1$2)): %p A306200 seq(a(n), n=0..35); # _Alois P. Heinz_, Jan 29 2019 %t A306200 ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}]; %t A306200 Table[Length[ursit[n]],{n,10}] %t A306200 (* Second program: *) %t A306200 b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, %t A306200 Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]]; %t A306200 a[n_] := If[n == 0, 0, b[n - 1, n - 1]]; %t A306200 a /@ Range[0, 35] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A306200 Cf. A000081, A004111, A276625, A301700, A306201, A316471, A316474, A317708, A317712, A317718. %K A306200 nonn %O A306200 0,4 %A A306200 _Gus Wiseman_, Jan 29 2019 %E A306200 More terms from _Alois P. Heinz_, Jan 29 2019