A306202 Matula-Goebel numbers of rooted semi-identity trees.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 84, 85
Offset: 1
Keywords
Examples
The sequence of all unlabeled rooted semi-identity trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 6: (o(o)) 7: ((oo)) 8: (ooo) 10: (o((o))) 11: ((((o)))) 12: (oo(o)) 13: ((o(o))) 14: (o(oo)) 15: ((o)((o))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 20: (oo((o))) 21: ((o)(oo)) 22: (o(((o)))) 24: (ooo(o)) 26: (o(o(o))) 28: (oo(oo)) 29: ((o((o)))) 30: (o(o)((o)))
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]]; Select[Range[100],psidQ]
Comments