This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306203 #5 Jan 30 2019 00:01:32 %S A306203 1,2,3,4,5,7,8,11,16,17,19,21,31,32,53,57,59,64,67,73,85,127,128,131, %T A306203 133,159,241,256,269,277,311,331,335,365,367,371,393,399,439,512,649, %U A306203 709,719,739,751,917,933,937,1007,1024,1113,1139,1205,1241,1345,1523 %N A306203 Matula-Goebel numbers of balanced rooted semi-identity trees. %C A306203 A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root. The only balanced rooted identity trees are rooted paths. %e A306203 The sequence of all unlabeled balanced rooted semi-identity trees together with their Matula-Goebel numbers begins: %e A306203 1: o %e A306203 2: (o) %e A306203 3: ((o)) %e A306203 4: (oo) %e A306203 5: (((o))) %e A306203 7: ((oo)) %e A306203 8: (ooo) %e A306203 11: ((((o)))) %e A306203 16: (oooo) %e A306203 17: (((oo))) %e A306203 19: ((ooo)) %e A306203 21: ((o)(oo)) %e A306203 31: (((((o))))) %e A306203 32: (ooooo) %e A306203 53: ((oooo)) %e A306203 57: ((o)(ooo)) %e A306203 59: ((((oo)))) %e A306203 64: (oooooo) %e A306203 67: (((ooo))) %e A306203 73: (((o)(oo))) %e A306203 85: (((o))((oo))) %t A306203 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A306203 psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]]; %t A306203 mgtree[n_]:=If[n==1,{},mgtree/@primeMS[n]]; %t A306203 Select[Range[100],And[psidQ[#],SameQ@@Length/@Position[mgtree[#],{}]]&] %Y A306203 Cf. A000081, A004111, A007097, A048816, A184155, A276625, A306200, A306201, A306202, A316467, A317710. %K A306203 nonn %O A306203 1,2 %A A306203 _Gus Wiseman_, Jan 29 2019