A306204 Decimal expansion of Product_{p>=3} (1+1/p) over the Mersenne primes.
1, 5, 8, 5, 5, 5, 8, 8, 8, 7, 9, 2, 5, 6, 3, 8, 7, 7, 6, 9, 7, 8, 6, 3, 7, 0, 2, 3, 2, 1, 9, 2, 3, 8, 4, 7, 6, 0, 6, 9, 4, 0, 5, 8, 6, 7, 9, 4, 7, 0, 2, 8, 1, 1, 3, 2, 9, 8, 1, 2, 6, 7, 8, 9, 2, 8, 8, 5, 9, 7, 5, 4, 5, 7, 6, 7, 8, 5, 5, 6, 9, 0, 5, 3, 5, 0, 0, 7, 9, 1, 1, 7, 9, 9, 3, 5, 6, 1, 9, 5
Offset: 1
Examples
Decimal expansion of (4/3) * (8/7) * (32/31) * (128/127) * (8192/8191) * (131072/131071) * (524288/524287) * ... = 1.585558887...
Links
- Tomohiro Yamada, Table of n, a(n) for n = 1..99
- Tomohiro Yamada, Unitary super perfect numbers, Mathematica Pannonica, Volume 19, No. 1, 2008, pp. 37-47, using this constant with only a rough upper bound (4/3)*exp(4/21) < 1.6131008.
Crossrefs
Programs
-
PARI
t=1.0;for(i=1,500,p=2^i-1;if(isprime(p),t=t*(p+1)/p))
Formula
Equals Sum_{n>=1} 1/A046528(n). - Amiram Eldar, Jan 06 2021
Comments