A306205 Number of lonely (gene tree, species tree) pairs with n+1 leaves.
1, 6, 102, 3420, 191700, 16291800, 1966015800, 321188943600, 68482943802000, 18508629682620000, 6191158589749980000, 2512773755138326680000, 1216899394130358698760000, 693258145152338464498800000
Offset: 1
Keywords
Examples
For n+1=2, the only (gene tree, species tree) pair ((A,B), (A,B)) with n+1=2 leaves is lonely and a(1)=1. For n+1=3, there are a(2)=6 lonely pairs with n+1=3 leaves: (((A,C),B), ((A,B),C)), (((B,C),A), ((A,B),C)), (((A,B),C), ((A,C),B)), (((B,C),A), ((A,C),B)), (((A,B),C), ((B,C),A)), and (((A,C),B), ((B,C),A)).
Links
- N. A. Rosenberg, Enumeration of lonely pairs of gene trees and species trees by means of antipodal cherries, Adv. Appl. Math., 102 (2019), 1-17.
Crossrefs
Programs
-
Mathematica
b[n_] := Sum[Binomial[n, p] T[p] T[n - p]/2^KroneckerDelta[p, n - p] Sum[ Factorial[p] Factorial[ n - p] Factorial[ n - 2]/(2^(k - 1) Factorial[k] Factorial[p - k] Factorial[ n - p - k] Factorial[k - 1]), {k, 1, p}], {p, 1, Floor[n/2]}] a[n_] := b[n+1] Table[a[n], {n, 1, 30}]
Formula
a(n-1) = Sum_{p=1..floor(n/2)} Sum__{k=1..p} (2n-2p-2)! (2p-2)! n! (n-2)! / (2^(n+k-3) (p-k)! (n-p-k)! (n-p-1)! (p-1)! k! (k-1)! 2^(KroneckerDelta(p,n-p)) ).
Comments