cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306208 Numbers x for which exists a number y such that x = Sum_{j=1..k}{y^(d_j) + (d_j)^y}, where d_j is one of the k digits of x.

Original entry on oeis.org

10, 21, 100, 101, 111, 344, 1000, 1010, 1100, 3674, 10000, 10001, 11101, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100, 101110, 101111, 110000, 110001, 110010, 110100, 110110, 110111, 111000, 111010, 111011, 111101, 427523, 1000000
Offset: 1

Views

Author

Paolo P. Lava, Jan 29 2019

Keywords

Comments

Lowest values of y for zeroless numbers: e.g., x = 21, 344, 3674 -> y = 3, x = 427523 -> y = 6, x = 75818252 -> y = 8.

Examples

			x = 10 -> y = 8 because 8^1 + 8^0 + 1^8 + 0^8 = 10.
x = 21 -> y = 3 because 3^2 + 3^1 + 2^3 + 1^3 = 21.
x = 100 -> y = 97 because 97^1 + 97^0 + 97^0 + 1^97 + 0^97 + 0^97 = 100.
		

Crossrefs

Cf. A258484.

Programs

  • Maple
    P:=proc(q) local a,b,j,k,n; for n from 1 to q do
    a:=convert(n,base,10); for k from 1 to q do
    b:=add(j^k+k^j,j=a); if b>n then break; else
    if n=b then print(n); fi; fi; od; od; end: P(10^9);