cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306210 T(n,k) = binomial(n + k, n) - binomial(n + floor(k/2), n) + 1, square array read by descending antidiagonals (n >= 0, k >= 0).

This page as a plain text file.
%I A306210 #7 Feb 04 2019 11:22:43
%S A306210 1,1,1,1,2,1,1,2,3,1,1,3,4,4,1,1,3,8,7,5,1,1,4,10,17,11,6,1,1,4,16,26,
%T A306210 31,16,7,1,1,5,19,47,56,51,22,8,1,1,5,27,65,112,106,78,29,9,1,1,6,31,
%U A306210 101,176,232,183,113,37,10,1,1,6,41,131,296,407,435,295,157,46,11,1
%N A306210 T(n,k) = binomial(n + k, n) - binomial(n + floor(k/2), n) + 1, square array read by descending antidiagonals (n >= 0, k >= 0).
%C A306210 There are at most T(n,k) possible values for the number of knots in an interpolatory cubature formula of degree k for an integral over an n-dimensional region.
%H A306210 Ronald Cools, <a href="http://nines.cs.kuleuven.be/ecf/">Encyclopaedia of Cubature Formulas</a>
%H A306210 Ronald Cools, <a href="https://doi.org/10.1007/978-94-011-2646-5_1">A Survey of Methods for Constructing Cubature Formulae</a>, In: Espelid T.O., Genz A. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 357, 1991, Springer, Dordrecht, pp. 1-24.
%H A306210 T. N. L. Patterson, <a href="https://doi.org/10.1007/978-94-009-3889-2_27">On the Construction of a Practical Ermakov-Zolotukhin Multiple Integrator</a>, In: Keast P., Fairweather G. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 203, 1987, Springer, Dordrecht, pp. 269-290.
%F A306210 T(n,k) = A007318(n+k,n) - A046854(n+k,n) + 1.
%F A306210 G.f.: (1 - x - x^2 + x^3 - 2*y + 2*x*y + y^2 - x*y^2 + x^2*y^2)/((1 - x)*(1 - y)*(1 - x - y)*(1 - x^2 - y)).
%e A306210 Square array begins:
%e A306210   1, 1,  1,   1,   1,    1,    1,    1,     1,  ...
%e A306210   1, 2,  2,   3,   3,    4,    4,    5,     5,  ...
%e A306210   1, 3,  4,   8,  10,   16,   19,   27,    31,  ...
%e A306210   1, 4,  7,  17,  26,   47,   65,  101,   131,  ...
%e A306210   1, 5, 11,  31,  56,  112,  176,  296,   426,  ...
%e A306210   1, 6, 16,  51, 106,  232,  407,  737,  1162,  ...
%e A306210   1, 7, 22,  78, 183,  435,  841, 1633,  2794,  ...
%e A306210   1, 8, 29, 113, 295,  757, 1597, 3313,  6106,  ...
%e A306210   1, 9, 37, 157, 451, 1243, 2839, 6271, 12376,  ...
%e A306210   ...
%e A306210 As triangular array, this begins:
%e A306210   1;
%e A306210   1, 1;
%e A306210   1, 2,  1;
%e A306210   1, 2,  3,  1;
%e A306210   1, 3,  4,  4,  1;
%e A306210   1, 3,  8,  7,  5,  1;
%e A306210   1, 4, 10, 17, 11,  6,  1;
%e A306210   1, 4, 16, 26, 31, 16,  7, 1;
%e A306210   1, 5, 19, 47, 56, 51, 22, 8, 1;
%e A306210   ...
%t A306210 T[n_, k_] = Binomial[n + k, n] - Binomial[n + Floor[k/2], n] + 1;
%t A306210 Table[T[k, n - k], {k, 0, n}, {n, 0, 20}] // Flatten
%o A306210 (Maxima)
%o A306210 T(n, k) := binomial(n + k, n) - binomial(n + floor(k/2), n) + 1$
%o A306210 create_list(T(k, n - k), n, 0, 20, k, 0, n);
%Y A306210 Cf. A007318, A046854, A322596.
%K A306210 nonn,easy,tabl
%O A306210 0,5
%A A306210 _Franck Maminirina Ramaharo_, Jan 29 2019